

Mathematics Tutorial Series

Differential Calculus #17

Summary of Differential Calculus

I. Ideas:

The derivative of a function is the rate of change of that function with respect to the variable.

The derivative is used to build dynamic mathematical models.

The derivative of f(x) at a point x = a is:

- 1. The rate of change of f at x = a
- 2. The slope of the tangent to the graph of f at x = a.
- 3. Formally:

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

II. Notations:
$$\frac{df}{dx} = f'(x)$$

III. Rules:

Here a, b are constants and f, g are functions.

Constants and addition: (af + bg)' = af' + bg'

Product:
$$(fg)' = f'g + fg'$$

Quotient:
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Chain:
$$(f(g(x)))' = f'(g(x)) g'(x)$$

IV. Key Limits

$$\lim_{h\to 0}\frac{\sin h}{h}=1$$

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

V. Methods

Implicit differentiation Logarithmic differentiation

VI. Key Derivatives

f	f'
c, constant	0
χ^m	mx^{m-1}
sin x	cos x
cos x	- sin <i>x</i>
tan x	sec ² x
sec x	sec x tan x
e^x	e ^x
$\log x$	$\frac{1}{x}$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
tan ⁻¹ x	$\frac{1}{1+x^2}$

VII Frequent Flyers

f	f'
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
x^x	$(1 + \log x)x^x$

VIII Standard Applications

- i. Newton's method of approximating roots
- ii. Optimization
- iii. Curve analysis
- iv. Related Rates
- v. L'Hospital's Rule for limits
- vi. Exponential models:
 - a. Radioactive decay
 - b. Unconstrained growth
 - c. Thermal flux Newton Cooling